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An optimal current density map is crucial in magnet design to provide the initial values within search
spaces in an optimization process for determining the final coil arrangement of the magnet. A strategy
for obtaining globally optimal current density maps for the purpose of designing magnets with coaxial
cylindrical coils in which the stored energy is minimized within a constrained domain is outlined. The
current density maps obtained utilising the proposed method suggests that peak current densities occur
around the perimeter of the magnet domain, where the adjacent peaks have alternating current direc-
tions for the most compact designs. As the dimensions of the domain are increased, the current density
maps yield traditional magnet designs of positive current alone. These unique current density maps are
obtained by minimizing the stored magnetic energy cost function and therefore suggest magnet coil
designs of minimal system energy. Current density maps are provided for a number of different domain
arrangements to illustrate the flexibility of the method and the quality of the achievable designs.

Crown Copyright � 2008 Published by Elsevier Inc. All rights reserved.
1. Introduction

The utility of NMR and MRI imaging technology depends upon
the magnetic field linearity and apparatus sensitivity, which in turn
determines the quality and rate of acquisition of useful data. This
consequently defines the spatial resolution of the image and asso-
ciated rate of temporal data acquisition. In the case of magnetic res-
onance excitation of objects to generate images, the pursuit of
higher sensitivity has resulted in a push to higher static magnetic
field strengths, and at the same time, the requirement of higher
RF resonator frequencies. The focus of this work is on the develop-
ment of improved NMR and MRI static superconducting magnets to
be used within the clinical and research environments [1].

The design of superconducting magnets has been widely inves-
tigated in the past using different optimization strategies to obtain
coil layouts that produce predefined magnetic field linearity prop-
erties within a specified region and associated stray field charac-
teristics. Optimization methods previously employed may be
considered as one of two general approaches: either where a broad
parameter space is searched for an optimal coil layout [2–5], or
where initial constraints are placed on the optimization strategy
to enable the calculation of a solution either more efficiently, or
in a more convergent and stable manner [6–8]. The former tends
to be associated with optimization strategies that require large
computational resources, and the latter tends to achieve magnet
008 Published by Elsevier Inc. All r
coil layouts faster given favourable initial coil layout approxima-
tion or seed data. Recently, it has been shown that the different
optimization strategies tend to provide very similar results, irre-
spective of the search space [9].

The literature suggests that it is possible to obtain better super-
conducting magnet coil layouts using more appropriate strategies
in different domains [10]. The approach described here promotes
the concept of a unique coil layout being derived from a fundamen-
tal current density map. The process of achieving a final magnet
design requires two individual key steps: definition of the initial
coil layout and then final optimization of the magnet coil arrange-
ment. In Part I of this work, we outline the process of obtaining the
globally minimum stored energy current density map from which
an initial coil layout is obtained. In a following publication, Part II
[11], the second step in the process is described whereby the mag-
net arrangement is generated from the fundamental current den-
sity map. It should be noted that in this work superconducting
coils are treated as cylindrical structures with coaxial symmetry
allowing current density maps to be described over a two-dimen-
sional domain.
2. Background theory

The magnetic field produced by an arbitrarily shaped electric
current carrying conductor cell can be expressed as the sum of
an infinite series of spherical harmonics. The amplitude and sign
of each spherical harmonic expansion term depends on the cell
geometry, current strength, winding direction and relative posi-
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tions of cells in a particular domain configuration. Hence, a collec-
tive set of cells expressed in terms of spherical harmonics can be
arranged in space to satisfy design specific constraints, through
appropriate choice of size, current magnitude/direction and spac-
ing. Therefore, spherical harmonic expansions are used to define
individual current carrying cells to reduce the computational cost
and overall optimization complexity.

Fig. 1 depicts the defined geometry and reference frame for a
cell in space, where the inherent symmetry is assumed to charac-
terize the cylindrical nature of the system, and allows for simplifi-
cation to only two dimensions. The z-axis is assumed to be the
longitudinal axis aligned with B0, and also the direction in which
subjects to be examined are inserted, for example, in Magnetic Res-
onance Imaging (MRI) or Nuclear Magnetic Resonance (NMR) spec-
troscopy magnets.

The axial component of the magnetic field at a point (r < r0,h) in
an axisymmetric configuration comprising filament current carry-
ing circular cells coaxial with the z-axis is in general given by [12]:

Bzðr < r0; hÞ ¼ I
X1
n¼1

anPn�1ðcos hÞrn�1; ð1Þ

where

an ¼ �
l0

2
sin h0

P1
nðcos h0Þ

rn
0

In (1) l0 is the permeability of free space, I is the cell current den-
sity, (r0, h0) defines the cell geometry with respect to an arbitrary
origin, (r, h) is the field point with respect to the origin and
Pm

n ðcos hÞ is the associated Legendre polynomial evaluated at the
appropriate location in space.The corresponding field expansion
for points lying in the external region defined for r > r0 is given by
[12]:

Bzðr > r0; hÞ ¼ I
X1
n¼1

bn
Pnþ1ðcos hÞ

rnþ2 ; ð2Þ

where
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l0

2
sin h0P1

nðcos hÞ0rnþ1
0 :

For more appropriate cell definitions, Eqs. (1) and (2) are extended
to allow for the calculation of the magnetic field generated by a
rectangular cross-section cell as:
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Fig. 1. Definition of the magnetic field at point P(r,h) produced by a cylindrical
superconducting cell with a cross-section in the yz-plane.
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In (3) coordinates (y1,z1) and (y2,z2) define the rectangular conduc-
tor cross-section in the yz-plane as shown in Fig. 1. The harmonic
coefficients an and bn can be computed analytically or numerically.
The analytic expressions for the coefficients can be obtained by
solving the integral for an and bn, but rather Gaussian quadrature
[13] was used in the general implementation to obtain the individ-
ual values of an and bn. The procedure of using Gaussian quadrature
was found to be both accurate and efficient, when compared to the
analytic expressions. Nevertheless for reference, the first two har-
monic coefficients for the inner region given in analytical form are:
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and for the outer region:
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3. MSE current density map

The static magnetic field is divided into the inner and outer field
regions, to allow for the calculation of the field using the spherical
harmonic method. If the conductors lie within a spherical shell
centred at the origin, then the inner field is defined to be the space
within the inner boundary and the outer field is therefore the space
outside the outer boundary, as shown in Fig. 2. In the figure the
cells used for calculating the current density map are illustrated
in the top domain of the magnet, and the potential final coil
arrangement based on the resultant current density map is de-
picted in the lower magnet domain for clarity.

The domain of interest is divided into K small cells or elements,
as shown at the top corner of Fig. 2. The current densities Ik asso-
ciated with individual cells are then determined by minimizing the
cost function F, which is formulated as a stored energy sum:

min
Ik

F ¼ 1
2

XK�1

k¼0

LkI2
kA2

k ; ð4Þ

subject to:

XK�1
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XN�1
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XK�1

k¼0

ak;nIk ¼ 0;

Imin 6 Ik 6 Imax;



Fig. 2. Illustration of the domain of the magnet, and the inner and outer magnetic
fields.
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where

Lk ¼
31:6 ðyk;1 � yk;2Þyk;2lk=Ak

� �2

6yk;2 þ 9lk þ 10ðyk;1 � yk;2Þ
10�6: ð6Þ

In (5) B0 is the desired magnetic field strength at the iso-centre, ak,n

and bk,m are the spherical harmonic terms of element k, where M
specifies the number of external harmonic coefficients and N the
number of internal harmonic coefficients, under the condition that
K P M + N. In (6) Lk is the self inductance of element k [14] with its
dimensions shown in Fig. 2, and Ak is the cross-sectional area of the
current carrying wire associated with the element. The values cho-
sen for M and N define the size of the stray field and the Diameter
Spherical Volume (DSV), respectively. Both M and N are increased to
decrease the size of the stray field and to increase the size of the
DSV. If a magnet design has N - 1 internal coefficients and M
external coefficients vanished, then it is referred to as an N order
M degree magnet design, to define a terminology of reference.

For magnet configurations in which coils are coaxial and sym-
metric about the illustrated xy-plane, the spherical harmonic
expansion results in the elimination of all even order terms within
the expansion. To further reduce computational complexity, the
strategy employed here considers only one quarter of the magnet
domain and thus the constraint (5) is simplified as follows:

XK�1
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2
;

XN=2�1

n¼1
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XM=2�1
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Imin 6 Ik 6 Imax;

where, K is the number of elements in one quarter of the magnet
domain.
The cost function provided in Eq. (4) is formulated as the stored
energy of K elements in the magnet domain. The optimization
methodology ensures that the stored energy is minimized, and
consequently, magnet training and quenching strains as a result
of stored magnetic energy will be kept to a minimum in the final
design. However, we would like to point out that the minimum
stored energy is not our primary aim, but rather our goal is to min-
imize both the volume of the superconductor and the coil current
density, which are equivalent to minimizing the stored energy of
individual coils. If an accurate calculation of the stored energy
was required, then the mutual inductance would have to be ca-
tered for and included as part of the cost function.

In Eqs. (4), (5), and (7) the parameters are constant except for Ik,
since the cell geometries are fixed. The cost function is in quadratic
form and the constraints are linear. Therefore, the problem can be
solved using the general quadratic program (QP) [15]. The problem
is stated as a strictly convex QP, since Lk > 0 and hence, the solution
obtained using this procedure yields the global minimum, or the
derived total stored energy has the smallest value. This is a very
important observation with respect to the current density map, be-
cause this methodology allows designs to be obtained that are un-
ique and cannot be improved using other methodologies for the
same domain dimensions. The minimization of F generates unique,
Minimum Stored Energy (MSE) current density maps, in which the
coils are embedded as described in Part II of this work.
4. Results

The current density map has several local maxima and minima
within the magnet domain, referred to as extremities. The number
of extremities is proportional to the number of eliminated spheri-
cal harmonics, and notably these extremities lie around the perim-
eter of the magnet region. For longer magnet domains, the current
density map may have a relatively large number of successive
maxima and minima of a common polarity, such that positive max-
ima are adjacent to positive minima, and vice versa. As the length
of the magnet region is reduced, the number of such extremities
becomes smaller, with a further reduction in the size of the magnet
domain resulting in the adjacent extremities having opposite
polarities. This means that in compact designs, positive maxima
are located adjacent to negative minima.

This section illustrates the location of the MSE current density
map extremities and the distribution of these extremities as the
size of the magnet domain is varied. Fig. 3 illustrates the concept
described here for the example of a 3 m long magnet domain. The
current density map illustrated in Fig. 3(a) is for an unshielded
order 10 degree 0 design, and Fig. 3(b) is for the shielded order
10 degree 2 design. As depicted in Fig. 3, the current density
extremities are located around the perimeter of the magnet do-
main to achieve a desired magnetic field. Both designs of
Fig. 3(a) and (b) aim to achieve the same DSV size, but the design
of Fig. 3(b) would have a significantly smaller stray field, since
the external harmonic coefficients are considered. The current
density map of Fig. 3(a) does not have any negative values,
whereas in Fig. 3(b) negative minima are incorporated to reduce
the stray field produced by the current carrying cells. This finding
explains the general observation that in longer, or smaller DSV
magnets, the winding directions are only in the positive sense,
and that negative winding coils are introduced when active
shielding is invoked.

As the length of the magnet domain is decreased, the minima
start to take on negative values, which imply that negative wind-
ings are required to reduce the magnet length, as shown in Figs.
4 and 5. Fig. 4 depicts the current density map of order 14 and de-
gree 0. If the domain is sufficiently long, then the extremities may



Fig. 3. MSE current density profiles with contours for (a) unshielded order 10 degree 0 and (b) shielded order 10 and degree 2 3 m long magnet domains.

Fig. 4. MSE current density profiles with contours for the unshielded order 14 degree 0 (a) 2 m and (b) 1 m length magnet domains. The maximum peaks at the lower corners
in (a) move to the outer boundary in (b) as the domain length is reduced.
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only be positioned on the lower domain boundary, as can be seen
in Fig. 4(a). Fig. 4(b) is an illustration of the effect upon the current
density map, when the domain length is decreased to a length of
1 m. As can be seen by comparing Figs. 4(a) and (b), the extremities
within the magnet domain still alternate in current direction, but
wrap around the perimeter of the domain as it is shortened. As a



Fig. 5. MSE current density profiles with contours for the shielded order 16 degree 4 (a) 2 m and (b) 1 m length magnet domains.

Fig. 6. MSE asymmetric current density profiles with contours for the shielded order 16 degree 4 1 m length magnet domain. The minima at the lower left hand corner in
Fig. 5(b) have now moved to an upper layer as the DSV is shifted towards the left boundary of the magnet domain.
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result, the individual coil locations are not restricted to the inner
domain boundary.

In Fig. 5(a) the current density map for a shielded 2 m magnet is
illustrated. Fig. 5(b) provides the current density map for the short-
ened designed. As can be seen in Fig. 5(a) and (b), the current den-
sity values theoretically indicate alternating extremities within the
current densities within the magnet domain. Once again, the opti-
mized current density map, as was in the case for the unshielded
design, possesses extremities on the perimeter of the domain.

Fig. 6 illustrates the asymmetric current density map for a
shielded 1 m magnet when the DSV is not located at the geometric
iso-centre of the magnet. The MSE current density map again indi-
cates alternating current density extremities located on the perim-
eter of the magnet domain. Comparison of Figs. 5(b) and 6
highlight that both designs have the same order, degree and mag-
net domain length, thus they also have the same number of
extremities. However, the current density map becomes asymmet-
ric and the extremities at the lower boundary in Fig. 5(b) are
shifted in the direction in which the DSV origin has been moved.

5. Conclusions

The strategy of obtaining minimum stored energy MSE current
density maps for various magnet domain configurations is de-
scribed in detail. The current densities obtained illustrate that in
an optimal design, the peak current densities are located around
the perimeter of the magnet domain.

As the magnet domain is made shorter, the peak current densi-
ties tend to alternate in sign, while remaining on the perimeter of
the magnet domain. As the magnet is made longer, the negative
extremities disappear, yielding traditional positive turn supercon-
ducting magnet designs.
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